Algorithmic Pricing and Liquidity in Securities Markets - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Algorithmic Pricing and Liquidity in Securities Markets

(1) , (1) , (1)
1

Abstract

We let "Algorithmic Market-Makers" (AMMs), using Q-learning algorithms, choose prices for a risky asset when their clients are privately informed about the asset payoff. We find that AMMs learn to cope with adverse selection and to update their prices after observing trades, as predicted by economic theory. However, in contrast to theory, AMMs charge a mark-up over the competitive price, which declines with the number of AMMs. Interestingly, markups tend to decrease with AMMs’ exposure to adverse selection. Accordingly, the sensitivity of quotes to trades is stronger than that predicted by theory and AMMs’ quotes become less competitive over time as asymmetric information declines.
Not file

Dates and versions

hal-03890671 , version 1 (08-12-2022)

Licence

Copyright

Identifiers

Cite

Jean-Edouard Colliard, Thierry Foucault, Stefano Lovo. Algorithmic Pricing and Liquidity in Securities Markets. 2022. ⟨hal-03890671⟩

Collections

HEC
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More