Aggregation of Semi-Orders: Intransitive Indifference Makes a Difference
Abstract
A semiorder can be thought of as a binary relation P for which there is a utilityu representing it in the following sense: xPy iffu(x) −u(y) > 1. We argue that weak orders (for which indifference is transitive) can not be considered a successful approximation of semiorders; for instance, a utility function representing a semiorder in the manner mentioned above is almost unique, i.e. cardinal and not only ordinal. In this paper we deal with semiorders on a product space and their relation to given semiorders on the original spaces. Following the intuition of Rubinstein we find surprising results: with the appropriate framework, it turns out that a Savage-type expected utility requires significantly weaker axioms than it does in the context of weak orders.