Continuous-Time Dynkin Games with Mixed Strategies - Archive ouverte HAL Access content directly
Journal Articles SIAM Journal on Control and Optimization Year : 2002

Continuous-Time Dynkin Games with Mixed Strategies

(1) ,
1
Nizar Touzi
  • Function : Author
  • PersonId : 858649

Abstract

Let (X,Y,Z) be a triple of payoff processes defining a Dynkin game \tilde R(\sigma,\tau) &=& E\left[ X_\sigma\1_{\{\tau > \sigma\}} +Y_\tau \1_{\{\tau < \sigma\}} +Z_\tau \1_{\{\tau=\sigma\}}\right] , where $\sigma$ and $\tau$ are stopping times valued in [0,T]. In the case Z=Y, it is well known that the condition X $\leq$ Y is needed in order to establish the existence of value for the game, i.e., $\inf_{\tau}\sup_{\sigma}\tilde R(\sigma,\tau)$ $=$ $\sup_{\sigma}\inf_{\tau}\tilde R(\sigma,\tau)$. In order to remove the condition $X$ $\leq$ $Y$, we introduce an extension of the Dynkin game by allowing for an extended set of strategies, namely, the set of mixed strategies. The main result of the paper is that the extended Dynkin game has a value when $Z\leq Y$, and the processes X and Y are restricted to be semimartingales continuous at the terminal time T.
Not file

Dates and versions

hal-00465013 , version 1 (18-03-2010)

Identifiers

Cite

Nicolas Vieille, Nizar Touzi. Continuous-Time Dynkin Games with Mixed Strategies. SIAM Journal on Control and Optimization, 2002, Vol.41,n°4, pp.1073-1088. ⟨10.1137/S0363012900369812⟩. ⟨hal-00465013⟩

Collections

HEC CNRS
3055 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More