Simpson's Paradox in Survival Models - Archive ouverte HAL Access content directly
Journal Articles Scandinavian Journal of Statistics Year : 2009

Simpson's Paradox in Survival Models

(1, 2) , ,
1
2

Abstract

In the context of survival analysis it is possible that increasing the value of a covariate X has a beneficial effect on a failure time, but this effect is reversed when conditioning on any possible value of another covariate Y. When studying causal effects and influence of covariates on a failure time, this state of affairs appears paradoxical and raises questions about the real effect of X. Situations of this kind may be seen as a version of Simpson's paradox. In this paper, we study this phenomenon in terms of the linear transformation model. The introduction of a time variable makes the paradox more interesting and intricate: it may hold conditionally on a certain survival time, i.e. on an event of the type {T>t} for some but not all t, and it may hold only for some range of survival times.

Dates and versions

hal-00464530 , version 1 (17-03-2010)

Identifiers

Cite

Marco Scarsini, Yosef Rinott, Clelia Di Serio. Simpson's Paradox in Survival Models. Scandinavian Journal of Statistics, 2009, Vol.36,n°3, pp.463-480. ⟨10.1111/j.1467-9469.2008.00637.x⟩. ⟨hal-00464530⟩

Collections

HEC CNRS
121 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More